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1 A Few Comments On Krull Dimension

Recall that R is a commutative ring. The Krull Dimension of R, if it exists, is
the maximal height of any prime ideal of R.

Proposition: If KdimR exists, then it is the largest height of any maximal ideal
of R.

Proof: If P is nonmaximal but prime, then any chain ending at P can be ex-
tended by a max ideal Q containing P , so height(P ) < height(Q).

Proposition: Let R be an affine domain over F .
Then KdimR = 0⇔ trdegFR = 0.

Proof: KdimR = 0, a domain ⇔ 0 is the only prime ideal ⇔ R is a field
⇔ R algebraic over F . (by Theorem A) ⇔ trdegFR = 0.

Proposition: Every maximal ideal of F [λ1, ..., λn] has height at least n and can
be spanned by n elements as a module.

Proof (by induction on n):
For n = 1: F [λ1] is a PID, so all nonzero prime ideals are maximal and are
generated by one element.
For n > 1: Let P be a maximal ideal of R = F [λ1, ..., λn], P contains a nonzero
element of F [λn], call it f . Let K = F [λn]/ < f > in F [λn]. K is a field.

Let Pn =< f > ⊆ P , where < f > is an ideal in R.
Consider P/P ′, R/P ′ ∼= K[λ1, ..., λn−1] by the second isomorphism theorem.

P/P ′ is a maximal ideal of R/P ′ so by induction P/P ′ has height at least n− 1
and can be spanned by n− 1 elements as a module.

Say f1+P ′, f2+P ′, ..., fn−1+P ′ span P/P ′. So P is generated by f1, ..., fn−1, f.
Suppose Q0 ( Q1 ( ... ( Qn−1 = P/P ′ is a chain in spec(R/P ′).
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By the second isomorphism theorem Q− i = Pi/P
′ and Pi is a prime ideal

of R containing P ′. So P ′ ⊆ P0 ⊆ P1 ⊆ ... ⊆ Pn−1 = P . Finally, R is a domain
so we can write 0 ( P ′ ( P0 ( P1 ( ... ( Pn−1 = P giving that P has height
≥ n.

2 LO, INC, GU

Running assumption: C ( R commutative rings. By the third isomorphism
theorem, if Q ∈ Spec(R), then C/(Q∩C) ∼= (C +Q)/Q. Note that (C +Q)/Q
is a subring of R/Q but R/Q is an integral domain, so (C + Q)/Q is also. So
Q ∩ C ∈ Spec(C).

Definition: Call the map defined above
ψ : Spec(R)→ Spec(C)
Q 7→ Q ∩ C.

Say Q ∈ Spec(R) lies over P in Spec(C) if P = Q ∩C. Say C ⊆ R satisfies the
lying over condition (LO) if ψ is onto. In cases we care about, ψ is typically
onto but not 1− 1.

Definition: Say C ⊆ R satisfies the incomparibility condition (INC) if when-
ever Q0 ( Q1 in spec(R) then Q0 ∩ C ( Q1 ∩ C.

The point is that if Q0 6= Q1 ∈ spec(R), both lying over P ∈ Spec(C), then for
an extension satisfying INC, we can’t have Q0 ( Q or Q1 ( Q0, i.e prime ideals
lying over P are incomparable in the subset partial order.

Definition: C ⊆ R satisfies the going up condition (GU) if for all P0 ⊆ P1 ∈
Spec(C) and for all Q0 ∈ Spec(R) lying over P0.
Q0 ⊆ ?
| |
P0 - P1

∃Q1 ⊇ Q0, Q1 ∈ Spec(R). Q1 lying over R.

Point:
1. Given Q0 ( Q1 ( ... ( Qm a chain in Spec(R),
Q0 ∩ C ⊆ Q1 ∩ C ⊆ ... ⊆ Qm ∩ C is a chain in Spec(R), but it might have
equalities. If C ⊆ R satisfies INC, then there are no ’eq’ in the second chain so
the chains have the same length.
2. Given P0 ( P1 ( ... ( Pm a chain in Spec(C). If C ⊆ R satisfies LO then
∃Q0 ∈ Spec(R) lying over P0. If C ⊆ R also satisfies GU, then inductively
∃Q1 ∈ Spec(R) for which
Q0 ⊆ Q1 ⊆ Q2 ⊆ ... ⊆ QM

| | | |
P0 ( P1 ( P2 ( ... ( Pm

and the inclusions on the top chain are strict, since they are strict after inter-
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secting with C. Thus both chains have the same length.

Proposition: If C ⊆ R satisfies LO, INC, GU, then KdimC = KdimR.

3 LO, INC, GU for integral extensions

Lemma: Suppose Q is an ideal of R. 1. If R is integral over C, then R/Q is
integral over C/(C ∩Q). 2. If Q′ is an ideal of R containing Q and P ′ = Q′∩C.
Then P ′/(Q ∩ C) = Q′/Q ∩ C/(C ∩Q).

Proof:
1. Take r ∈ R. Let f be a monic polynomial with coefficients in C, f(r) = 0.
Then the image of f in R/Q has coefficients in (C + Q)/Q ∼= C/(C + Q). So
the image of r is integral over C/(C ∩Q).
2. Recall the modularity property of modules:
For N1 ⊆ N2,K submodules of a module M , (N1 +K) ∩N2 = N1 + (K ∩N2).
So we want P ′/(Q ∩ C) = Q′/Q ∩ C/(C ∩Q).
Equivalently, ((Q′ ∩ C) + Q)/Q = Q′/Q ∩ (C + Q)/Q. So it suffices to show
(Q′ ∩ C) +Q = Q′ ∩ (C +Q) which is true by modularity.

Lemma: Suppose R is an integral domain and R is algebraic over C. Then
every nonzero ideal of R intersects C nontrivially.

Proof: Let A 6= 0 be an ideal of R and take a 6= 0, a ∈ A. Let f =
∑n

i=1 ciλ
with c0 6= 0 and f(a) = 0. Then c0 = (−

∑n
i=1 c0a

i−1)a ∈ A. So c0 ∈ A ∩ C.

Proposition: Let C ⊆ R be integral. Then INC holds.

Proof: Let P ∈ Spec(C), Q0 ⊆ Q1 ∈ Spec(R) lying over P . Then C/P ⊆ R/Q0

is also an integral extension, and both are integral domains. Furthermore,
Q1/Q0 (an ideal of R/Q0) lies over 0 in C/P , i.e. Q1/Q0 ∩ C/P = 0 con-
tradicting the lemma unless Q1/Q0 = 0, i.e. Q1 = Q0.

Lemma:
1. Let S ⊆ R,S closed under multiplication, 1 ∈ S. Then any ideal Q which is
maximal wrt Q ∩ S = φ is a prime ideal.
2. Suppose P ∈ Spec(C) and A is an ideal of R with A ∩ C ⊆ P . Then there
exists an ideal Q containing A and maximal with respect to Q ∩ C ⊆ P and Q
is necessarily a prime ideal.

Proof:
1. Check Q prime by checking that for any B1, B2 ) Q, B1, B2 ideals of R we
have B1, B2 ( Q. Take B1, B2 ) Q ideals of R. By hypothesis B1 ∩S 6= φ. Say
si ∈ Bi ∩ S. Then s1, s2 ∈ B1, B2 ∩ S so s1, s2 6= Q so B1B2 ( Q.
2. Let S = C \P . Let S = {Q ideal of R : Q∩S = φ,A ⊆ Q}. S is nonempty
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as A ∈ S . The union of any chain in S is in S .
∴ by Zorn’s Lemma, S contains a maximal element Q which is the Q we were
looking for, and by 1, Q is prime.

Lemma: GU ⇒ LO (for commutative rings)

Proof: Suppose P ∈ Spec(C). By the Lemma with A = 0,∃Q0 ∈ Spec(R) with
Q0 ∩C ⊆ P . Let P0 = Q0 ∩C. Then apply going up to get Q ∈ Spec(R), Q0 ⊆
Q,Q lying over P .

Proposition: Let C ⊆ R integral. Then LO and GU hold.

Proof: By the previous lemma, we only need to prove GU. Take
**INSERT DIAGRAM***
By 2 of the Lemma before, ∃Q ⊇ Q0 in Spec(R) maximal wrt Q ∩ C ⊆ P1.
Let P = Q ∩ C. If P = P1, we’re done.
So assume P ( P1. Take a ∈ P1 − P .
Claim: < Q, a > ∩C ⊆ P1.
This will suffice as it contradicts the maximality of Q. Take r ∈ R st ar ∈ C.
By integrality rt =

∑t−1
i=0 cir

i, ci ∈ C, some t.

So (ra)t = ai
∑t−1

i=0 cir
i = a

∑t−1
i=0 a

t−i−1ci(ra)i ∈ aC ⊆ P1.

If R is an integral extension of C, then KdimR = KdimC.
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